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Segmentation and Measurement of the Cortex from
3-D MR Images Using Coupled-Surfaces Propagation

Xiaolan Zeng,* Lawrence H. Staib, Robert T. Schultz, and James S. Duncan

Abstract—The cortex is the outermost thin layer of gray matter The cerebral cortex is characterized by its convoluted sur-
in the brain; geometric measurement of the cortex helps in face. Due to this convoluted nature, the segmentation of the
understanding brain anatomy and function. In the quantitative cortex must be considered in three dimensions. For example,

analysis of the cortex from MR images, extracting the structure Ith h th bral tical | . v 3 thick
and obtaining a representation for various measurements are key 2t1ough the cerebral cortical fayer IS nearly 5 mm thic

steps. While manual segmentation is tedious and labor intensive, [1] everywhere on the cortex, an oblique two-dimensional
automatic reliable efficient segmentation and measurement of the (2-D) slice that happens to be approximately parallel to a

cortex remain challenging problems, due to its convoluted natu_re. particular sulcus will give the appearance of a much thicker
Here we present a new approach of coupled-surfaces propagation, ciructure. Only by going through the neighboring slices can

using level set methods to address such problems. Our method ¢ lete inf tion t f tati Sli
is motivated by the nearly constant thickness of the cortical we get compliete information to perform segmentation. Slice-

mantle and takes this tight coupling as an important constraint. bY-slice manual tracing of the cortex is extremely tedious
By evolving two embedded surfaces simultaneously, each driven and labor intensive, hence, automatic, reliable, and relatively
by its own image-derived information while maintaining the efficient segmentation which enables automated measurement
coupling, a final representation of the cortical bounding surfaces is a highly desirable goal

and an automatic segmentation of the cortex are achieved. Char- ’

acteristics of the cortex, such as cortical surface area, surface

curvature, and cortical thickness, are then evaluated. The level

set implementation of surface propagation offers the advantage A. Related Work

of easy initialization, computational efficiency, and the ability to . . .
capture deep sulcal folds. Results and validation from various There are a variety of alternatives to our approach. The first

experiments on both simulated and real three-dimensional (3-D) group are region-based methods which exploit homogeneity

MR images are provided. in images. They primarily depend on the underlying consis-
Index Terms—Coupled-surfaces propagation, level set, 3-D €NCY of any relevant feature in different regions. Following
segmentation, volumetric layer. the work of Geman and Geman [10], Markov random field

(MRF)-based methods have been widely used for this purpose,
which employ energy-minimizing techniques to reconstruct
a piecewise flat image from the noisy data. A multispectral
SIGNIFICANT amount of recent anatomical MRI studiesoxel classification method [2] was used in conjunction with
on the human brain have focused on the cerebral corteonnectivity to segment the brain into different tissue types
As the outermost layer of gray matter in the brain, thifom three-dimensional (3-D) MR images. A material mixture
cerebral cortex is composed of columns of neurons alignetbdel [19] was also used for the segmentation problem.
perpendicularly to the cortical surface that serve as ba®egion-based methods typically require further processing to
units of information processing. Cortical surface area is likelyroup segmented regions into coherent structures. Moreover,
to be proportional to column number and therefore surfageantitative measurement of features other than volume does
area should be related to functional capacities. In additiampt follow immediately.
regional cortical thickness and gray-matter volume may relateThe most common second alternative strategy is boundary
to functional capacities and alteration in each of these featufgsling, of which active contour methods are of special note.
has been suspected in specific neuropsychiatric disorders [32]ey rely mainly on gradient features for segmentation of
In the quantitative analysis of these features of the cortestructures from an image. One of the most generic and popular
segmentation is the first step. methods of detecting boundaries is the snakes approach due
to Kasset al. [13]. One concern regarding this method is that
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An alternative approach to deformable boundary finding was ;
to use a 3-D surface model with Fourier presentation due to

Staib and Duncan [35], [36]. The advantage of this model is "i/r:(?}/’
that it allows a wide variety of smooth surfaces to be described ///“2
with a small set of parameters. However, it has limitations in

capturing convoluted surfaces, such as the cortical surface.
All of the above methods do not explicitly use constraintgd- 1. A local operator to derive image information.
due to cortical structural information, hence, they are limited
for the purpose of cortical segmentation. However, there hiisbetween. Following our earlier work [42], we propose a
been some effort made in this direction. MacDonaldal. new approach of coupled-surfaces propagation via level set
presented an iterative algorithm for simultaneous deformatigtethods for the segmentation and measurement of the cortex.
of multiple surfaces with intersurface proximity constraint8y evolving two embedded surfaces simultaneously, each
and self-intersection avoidance, where the deformation wédven by its own image-based information while maintain-
formulated as a cost function minimization problem [21], [22Jng the coupling, we are able to achieve an automatic and
This method was applied to 3-D MR brain data to extra¢@bust segmentation of the cortex and simultaneously obtain
surface models for the skull and the cortical surfaces. This apfepresentation of the inner and outer cortical surfaces from
proach takes advantage of the information of the interrelatigich surface area can be calculated. Furthermore, curvature
between the surfaces of interest. However, drawbacks liedAd thickness maps are easily obtained from this coupled level
its extremely high computational expense and the difficulty 6t formulation.

tuning the weighting factors in the cost function, due to the
complexity of the problem. A. Image Information Derivation

Teo et al. [38] used a system that exploited knowledge of Medical images consist of a number of different anatomical
cortical anatomy, in which white matter and CSF regions wefggions. The homogeneity of each region can usually be
first segmented. After the connectivity of the white matter washaracterized by various voxel statistics inside. Thus, by using
verified in regions of interest, a representation of the graj¢adient features (information of gray level difference between
matter was created by a constrained growing out from th@ighboring voxels) alone, we actually lose important pieces
white-matter boundary. The focus of this work was to creag information. Here in our approach, instead of using gradient
a representation of cortical gray matter for functional MRfeatures, we design a local operator which makes use of the
visualization. gray level information, and gives a measure of the likelihood

Davatzikoset al. introduced the concept of a ribbon forof a voxel |y|ng on the boundary between tissdeand tissue
modeling the outer cortex in cross-sectional brain images [# This model can also be extended to make use of a vector
and then extended the model into 3-D [5]. A deformable sugf registered parametric images (such as T1, T2, and PD MR
face algorithm was constructed to find the central layer of th@ages) or images from different modalities.
cortex. Based on this parameterization, the cortical structureat each voxel sites, a small neighborhood arousds drawn
was characterized through its depth map and curvature mgdse Fig. 1). Now, given a possible boundary with normal
This method explicitly used the structural information of th@jrection g, dividing the neighborhood into parfsl and R2,

cortex. However, close initialization and significant humaghe probability thats lies on the boundary between tissue
interaction are needed to force the ribbon into sulcal foldgnd tissueB is

To compensate for this, Xet al. further extended the method i i
by using a new external force model, called gradient vector pap(f) =p(R1 € Tissued) p(k2 € TissueB). (1)

flow, for surface deformation [41]. Given an estimatio* of 4, we can use(6*) as a measure
Daleet al. [6] concentrated on cortical surface-based analyf the likelihood thats lies on the boundary between tissue

sis. They started by deforming a tessellated ellipsoidal templateand tissueB.

into the shape of the inner surface of the skull under the one way of estimating;’* is to first generate the vector

influence of an MRI-based force and a curvature reducing — [p(4,),p(6s), -, p(d:)]* where k is the number

force. White matter was then labeled and the cortical SUrfaC@S possib|e directions Corresponding to the 26 first-order

were reconstructed with validation of topology and geometryeighbors. Thend* is the direction which corresponds to the
element in vectorP that has the largest magnitude. Here we
make the assumption of one single parametric imagein
which voxels belonging to tissud are independently drawn

The cortical layer to be recovered has an nearly constdrdm a Gaussian distributio&(z:.4, 0 4) and voxels belonging
thickness (there is variation across different regions) andtistissueB are independently drawn froi(uz,05). Thus,
bounded by two surfaces: the CSF/gray-matter boundary and have

Il. OUR APPROACH

gray-/white-matter boundary. Across each bounding surface = o= (X —p)? /%)
. . h o pap(f) = H r—pa)’ /o
there is a local difference in the gray-level values, while in 27((”
between the two surfaces there is a homogeneity of certain rehl 1
voxel statistics. For our purposes, the cortical layer is defined . H e~ (Xe=pn)?/og) . 2)

completely by its bounding surfaces and the homogeneity tER2 V2rop
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coupled surfaces
approach prevents
| — the inner surface
from collapsing
into CSF

H-s- coupled surfaces
approach prevents
the outer surface
from penetrating
non-brain tissue

Fig. 3. Single-surface versus coupled-surfaces approach on cortex segmen-
tation. Top: surfaces resulting from single-surface approach shown on a
sagittal slice of original image (finding the inner and outer cortical surfaces
Fig. 2. Results from our local operator compared to image gradient. (a) Arparately); bottom: surfaces resulting from the coupled-surfaces approach
axial slice from original 3-D brain images. (b) Result from gradient operatoshown on a sagittal slice of the expert tracing result. Notice that the outer
(c) Result from our local operatgrpc(6*), B = gray matterC' = white ~ cortical surface resulted from the coupled 3-D algorithm nicely fits the
matter. (d)pas(6*), A = CSF,B = gray matter. boundary from expert tracing.

In our implementationk1 and R2 are now set to include the evolving level function¥(z,#) remains a function, the
one voxel each. A limited expansion to several voxels couginbedded propagating from{t) may change topology, break,
potentially further enhance the capability of capturing homdnerge, and form sharp corners ds evolves. Second, the
geneity. In Fig. 2, we show an example of the results frofftrinsic geometric properties of the front may be easily
our local operator, showing how well it selects the appréietermined from¥. For example, at any point of the front,
priate gray-level transition which is crucial for subsequeriieé normal vector is given by = V.
processing. The local operator was applied to images after we
reduced the effects of MR inhomogeneity by correcting, using, single-Surface Approach Versus Coupled-Surfaces Ap-
a simple fixed map. The map was determined manually Byoach
sampling tissue types throughout the field to decide the averag%

inhomogeneity. Note that more complicatgd MR image models detcr:]ausel of the Ilmlte}tlonsﬁof tth_? _|maf?|ng tgchnlqgethuie_d
[10], [17], [18] can be used to calculatdd). and the volume averaging effect, it is often observed that in

some regions there is not enough information from the image
B. Level Set Method data to clearly defing either _the outer or the inner bounding
surface. When applying a single-surface approach, we may
Level set methods are powerful numerical techniques fgery well end up with error in such a region. While using
analyzing and computing interface motion, and have been usgé coupled-surfaces approach, information on the partner
in image segmentation in recent years [23]-[25], [33], [34burface is available through the coupling and improves the
The essential idea of the level set methods is to represent gegformance of the surface finding.
propagating surface (in our case) of interest as a ff¢titand  |n the case of MR brain images, due to volume averaging,
embed this front as the zero level set of a higher dimensionglsome regions, the boundary between white matter and gray
function ¥ defined by¥(z,t) = d, whered is the signed matter is not well shown, while the CSF appears clearly. The
distance from position: to +(¢). A Eulerian formulation is single-surface approach may hence have the inner cortical
produced for the motion of this surface, propagating along &sirface collapse into CSF. However, with the coupled-surfaces
normal direction with speed” where ' can be a function approach, we maintain some minimal distance between the
of the surface characteristics (such as the curvature, normaler cortical surface and CSF, thus preventing the inner
direction, etc.) and the image characteristics (e.g., gray lev@tical surface from going into CSF. There are also places
and gradient, etc.). The equation of the evolutionlgfinside where structures such as eye sockets appear, so that the CSF
which the propagating surface is embedded as the zero leyghnot be observed in the image. With the coupled-surfaces
set, is then given by approach, the white-/gray-matter boundary information is then
U, + F|VU| = 0. 3) _used to stop the propagation of the _outer cortical surface before
it penetrates nonbrain structures. Fig. 3 shows examples of the
The major advantages of using this method over othabove-mentioned cases where the coupled-surfaces approach
active contour strategies include the following. First, althougbutperforms the single-surface approach.
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eip(6%) h(d) strong or the distance to the other surface moves away from
the normal range. Each surface finally stops when the image-

derived information is strong enough or the distance to the
/TN other surface is out of the normal range.
. Based on the fact that the speed terms are designed to force

—
-

1 o i max . .
4. distance betua )l e ding surfaces 14l the propagating level set to stop at the desired boundary, the
ldl absolute value of the distance image-dependent speed terms have meaning only on the front,
in: inima istance a owe . .
max: maximal distance allowed i.e., the zero level set. However, the level set equation of

motion is written for the functionl, defined over the entire
image grid. We thus extend the speed terms from the zero
level set to the whole image grid, as in [33], i.e., pdirnttkes
D. Coupled-Surfaces Propagation: Speed Term Design  on the speed of point, which is the closest point tb and

In solving the problem of segmenting the cortex, we coli€s on the zero level set.
sider two moving interfaces describing the inner and outerDue to the level set formulation, we have a notion of
cortical bounding surfaces, respectively. Starting from insidee inside and outside of the current moving front, which is
the inner cortical surface (i.e., inside the white matter) with s#mbedded in the outward normal directi@nThis information
offset in between (see Fig. 7), the interfaces propagate aldt@ be used to reduce the feasible space of poséibler 7i
the outward normal direction, stopping at the desired placean be used directly as an estimatefof thus obtaining a

Fig. 4. Functionsyy andh used in speed term design.

while maintaining a certain distance between them. better result.
Embedding each surface as the zero-level set in its own
level function, we have two equations E. Narrow-Band Method and Distance Correspondence
Win, + Fin| V| =0 () For computational efficiency, the algorithm is implemented
14

using a narrow-band method [33], which modifies the level
set method so that it only explicitly updates the points close
where F,,, and F.,, are functions of the surface normalto the current propagating fronts. Our implementation of the
direction, image-derived information, and distance betwe&arrow-band method uses this idea, but is designed specifically
the two surfaces. The coupling is embedded in the desitfif coupled level sets so that the distance between the two
of Fi, and F,,;. At places where the distance between the@mbedded surfaces (necessary for the computation of the speed
two surfaces is within a normal range, the two surfacdgrms) is available with no further computation after narrow-
propagate according to the image-based information. Whé@nd rebuilding.
the distance between the two surfaces is out of the normaBased on the fact that any poihtin the narrow band of
range, the distance imposes a constraint on the propagatiodhgf current surface should be within some neighborhood of
the surfaces. a certain pointa on the current surface, the narrow band

With the level set implementation we have a natural wd§ constructed dynamically in the 3-D neighborhood of each
to establish a correspondence between the points on the #@t on the current surface by including points that lie within
evolving surfaces through distance, which is evaluated wiéh certain distance range (i.e., bandwidth) away from that
little extra computational expense. Recall that the value of tR@rticular point. Also, since a pointin the narrow band can
level function of a front at any point is simply the distanc&e within the neighborhood of several points - - -, a; on the
from this point to the current front which, as in [33], iscurrent surface, we update the value of the level function
calculated as the shortest distance from this point to all théb to be

oints on the front. In our case of two moving surfaces, for .
gny point on the inner moving surface, the distagnce to the outer sign(W(b)) - (Z I?m l dist(b, a;))
moving surface is the valu&,,; at this point and vice versa
for the point on the outer moving surface. Hence, we write

\Ijoutt + Fout |V\Ij0ut| =0 (5)

where functiondist gives the positive Euclidean distance.
The steps for rebuilding the narrow band and updating

Fi = 9(pBc(0 )M Vo) (6) inside the band are as follows:
Fou = 9(pan(0*))h(Vi) (7) for every point a on the current front {
) o for every point bin the neighborhood of a{
where g and h are the functions, as shown in Fig. 4, and it 4is not already in the narrow band,
A, B,C denote CSF, gray matter, and white matter respec- then add &to the narrow band:
tively. o _ if dist(b,a)is less than
Function ¢ maps larger likelihood to slower speed, i.e.,  the absolute value of the current (b),
as the likelihood gets largeg tends to zero, while as the then update W(b) to be sign(U (b)) dist(b,a);

likelihood gets to near zerg; tends to a constant. Function

h penalizes the distance off the normal range. As the distance

goes out of normal rangé, goes to zero. Thus, each surface

moves with constant speed along its normal direction andThe size of the neighborhood depends on the allowed band-
slows down when either the image-based information becomeisith and therefore is fixed. Thus, for a surface represented
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r— Bandwidth

Witi: current surface

outer surtace with

e e - ‘it narrow band
; - inner surface with
f its narrow band
5 s
) \\ - COrrespondence between
H\\ L points on the inner
dote and outer surfaces

Fig. 5. Schematic of narrow-band implementation for 2-D curve case (same
argument holds in 3-D). Top: dynamic construction of the narrow band and the
update of the level functio® within are performed in the neighborhood of
the current surface. Bottom: inner and outer surfaces with their narrow bands.
Notice the inner surface lies within the narrow band of the outer surface, and
vice versa.

Algorithm Diagram

concentric spheres as initialization,

store narrow bands information Fig. 7. Propagation of the outer (pink) and inner (yellow) bounding surfaces.
i Top: pairs of concentric spheres (only the outer ones are shown on the left,

both are shown with a cutting plane on the right) as initialization in unedited

calculate speed term on the current surfaces from image information and 3-D MR brain images; middle: intermediate step in surface propagaﬁon;

the distance o the parjner surface; extend speed term to the whole narrow

band; calculate ¥ I”g from speed term and W' (i.0 : both inner and outer)

bottom: final result of the outer and inner cortical surfaces.

F. Measurement
[construcr surfaces from ‘PI-”; 1using Marching Cubes algorithm

With the coupled-surfaces propagation via level set meth-
i . . ods, it is easy to perform various measurements on the cortical

reinitialize Y [ o ‘within new narrow bands, store information of . . . .

the new narrow bands and the shortest distance correspondence layer with little extra computational expense. Whole brain

volume, cortical gray-matter volume, white-matter volume,

cortical surface area, cortical surface shape, and cortical thick-

no , ness maps are among the features most interesting in the

iyes study of brain structure and function. Different combinations

of the above measurements may help in determining the
pathobiology of various neuropsychiatric disorders. We now
Fig. 6. Algorithm diagram. discuss one by one the above measurements from our coupled-
surfaces formulation.
using N points, the construction of its narrow band and \plume: With the signed distance functioh, the level set
the update ofl in the narrow band is a)(N) calcula- formulation keeps track of the inside and outside of the current
tion. moving front. Once the evolution of the coupled surfaces is
In our application, two different narrow bands are computeghmpleted, the cortical gray-matter voxels are those that lie
for the inner and outer interfaces, respectively. As showgside the outer cortical surface while outside the inner cortical
in Fig. 5, to ensure that the distance-based correspondegggface. In the same fashion, nonbrain tissue voxels will be the
between the coupled surfaces falls out automatically, ti@es that are outside the outer cortical surface and voxels of
two bandwidth ranges (for the inner and outer narrow bangite matter will lie inside the inner cortical surface, except
separately) are chosen such that the inner surface lies withip subcortical gray matter and ventricles.
the narrow band of the outer surface and vice versa. Thus, agecause the signed-distance-based measures have a sub-
each time step, the current position of the propagating couplgskel accuracy, we can obtain a subvoxel segmentation instead
surfaces and the surrounding narrow bands are estimated gfg binary segmentation on the data set. In other words, if the
the whole process repeats until the speed terms for both Higtance from a voxel to the zero level set surface is less than

inner and outer surfaces reach a zero value everywhere.(fig voxel size in width, the voxel is considered to contain
summarize, the algorithm diagram is shown in Fig. 6. multiple tissue types.
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Surface Area:A marching cubes algorithm [20] is per-A. Validation on Simulated MR Data with Ground Truth

formed on the signed distance functionB,, and Wou. 10 e first present our segmentation results using the simulated
extract the embedded zero level sets. The resulting surfaggs brain images provided by the McConnell Brain Imaging

are realized using a triangular representation. Surface are&Lhter at the Montreal Neurological Institute [12]. The images

thesn ialculgted as the sdughof thle g;;is g_f the trlznglgs. are generated using an MRI simulator [16] which allows users
urface Curvature an ape In IScussed above, independently control various acquisition parameters to

one adyantage of the Ieve! set impIementqtion is that geome Ktain realistic MR images. The ground truth of the phantom is
properties of the propagation front are easily calculated [33]. Jlovided in the form of membership functions of each voxel
our case of surfaces propagating in 3-D space, there are man

choices for the curvature of the front (for formal definitions o eYongmg to dlﬁereqt tissue types, such as the skull, CSF,
. . gray matter, and white matter.
the curvatures, refer to [7]), including mean curvatske and

. . The simulated data we tested our algorithm on were T1
Gaussian curvature;. Both may be conveniently expressed . : :
. : images of a normal brain, with the following parameter
[33] in terms of the level set functiof

settings: voxel size= 1 mm?, noise = 3%, and intensity
nonuniformity = 0%. Starting from the unedited images, no

g N2 WL, s
Z (Wi + W)W = 200, T55) further user interaction is needed after specifying several pairs

Ky = G3k)eC (8) of concentric spheres as initialization. The spheres grow out
2(\112 + U2 4 \112)3/2 . . .
x ¥ z and automatically lock onto the inner and outer cortical sur-
Z (U2(V,;; U — \Iffk) faces. As long as the spheres are placed inside the white matter,
(3,4,k)eC the algorithm is robust to the starting position. Measurement of
re = +2U 0 (Wi Wi — Wiy W) ) the volume is then done as described in the previous section.
(V2 + W2 + W2)2 We use a binary segmentation in this experiment. In our

implementation of cortex segmentation, the allowed distance

whereC = {(z,y,2),(y, z,z),(z,x,y)} is the set of circular between the inner and outer surfaces is set to range from 1.5
shifts of (z,y, 2). to 5.5 mm, based on knowledge from reported postmortem
The maximum principle curvature; and the minimum studies [1]. Therefore, to ensure the proper overlapping of the
principle curvatures, are related to Gaussian and meammner and outer narrow bands, the bandwidth ranges for the

curvatures through the following formulas: inner and outer interfaces are chosen to b8 fmm, 6 mm)
and 6 mm, 3 mm), respectively.
K1 = K+ /“?\4 — ke, Ko = Ka — \/ K2, — Ka. To evaluate the segmentation result, we apply several mea-

sures defined as follows. For any tissue tyfyén the region

We also adopt the classification of surfaces by KoeRf interest, we denpte the voxels of tissue typeecovered
derink [15], using the numerical relationship between the twfgPm our 3-D algorithm ad/, and the voxels that are mostly
principal curvatures. A shape index function is defined & tissue typel’ according to the phantom (i.e., the value of
si = (2/x) arctarf(ky + ka2)/(k1 — K2)), which classifies tissueZ” membership function is greater than 0.5)as We_
the surfaces into nine types, as show in Fig. 11. With ttfénote the overlap of, and V. asV,. and the part that is
shape index, gyri (mostly ridges) and sulci (mostly ruts) af@ Va but notinV, asv;... A true positive (TP) rate is then
automatically identified. Further potential use of the shapiefined to be the size df,. relative to the size o¥., while
index includes the definition of an atrophy index (sulci wideHe false positive (FP) rate is defined to be the ratio of the size
with age). of V,. to the size ofV,. We also define the volume ratio to be

Thickness Map:As discussed above, the value of the levéhe volume of all the voxels segmented as of tissue f®y
function of a front at any point is the distance from this point t8ur algorithm to the total subvoxel volume of tissue type
the current front. Also recall that the inner and outer surfacéBecified by the phantom (subvoxels contribute in only part
are the zero level sets df;, and U,,.. Thus, for any point Of the voxel volume).
on the outer surface, the absolute valuelgf at the point is ~ Table | shows our measurement results over 3 types: total
simply the distance from the point to the inner surface. Usirgain tissue (including white matter and gray matter); cortical
this measure, we obtain a thickness map between the inner gr@y matter in selected slices; and white matter. Since the
outer cortical surfaces which can be used to study the nornaégorithm is designed specifically for the nearly constant
thickness variations across different regions of the brain atftickness of the cerebral cortex, it recovers only part of
also the abnormalities in brain structures. the gray matter in the brain stem and the cerebellum where

the constant thickness constraint is not well satisfied. These
regions account for most of the errors in the TP rate and
1. EXPERIMENTAL RESULTS volume ratio for whole brain tissue. For the same reason

In this section, we show validations of our approach othat the algorithm is specifically tailored for the cerebral
various simulated and real MR data, as well as applicationsrtex, we would compare the cortical gray-matter volume
to specific cortical studies. We use only T1-weighted imagesly in the cerebrum. Since the phantom data does not
because they provide the best gray/white contrast [31] and arevide the information related to partitioning the cerebrum,
therefore commonly used for neuroanatomical analysis. the cerebellum, and the brain stem, we only compare the
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TABLE | 1.0 o
COMPARISON OF OURVOLUME MEASUREMENTS WITH THE PHANTOM 876
GROUND TRUTH. WHOLE BRAIN: TOTAL BRAIN TisSUE (WHITE+GRAY 0.8t
MATTER); CORTICAL GRAY MATTER *: CORTICAL GRAY MATTER ON
THE FRONTAL 49 CORONAL SLICES AND THE ToP 56 AXIAL SLICES o6 b
% whole | cortical gray | white .
brain matter * matter o
TP rate 92.3 92.8 92.4 0
FP rate 2.0 6.0 3.3
volume ratio | 96.3 103.2 98.1 0

cortical gray-matter volume on selected slices where tiwg. 8. Average overlap metric for gray-matter segmentation on 20 normal
cerebellum and brain stem are excluded: frontal, 49 cororins from various segmentation methods. The results of automatic segmen-

. . . . tagion methods provided by IBSR were from work done by Rajapakse. MAP:
slices and top, 56 axial slices. The reSU|tlng average errorrﬁximuma posterioriprobability. ML: maximum likelihood>: using frontal

the TP and FP rate is around 6—7%, and the volume ratio ert@rcoronal slices and upper 50 axial slices of each brain to exclude brain
is within 4%. For the white matter, the errors for the TP, FFtem and cerebellum.
rate, and volume ratio are also low. These results show that our

algorithm performs well in isolating the brain from nonbrain

tissues and in segmenting the cortex.

B. Validation on 20 Normal Brains

To further evaluate our segmentation approach under a
wide range of imaging conditions, we tested the algorithm
on real MR data and compared the results obtained with gray
segmentation by manual experts. Since for 3-D data it isFa@. 9. Three-dimensional volume rendering of the frontal lobe cortex with
very labor intensive job to segment gray and white matter, @8 oblique cutting plane. The convoluted thin bright ribbon is the cortical
utilized the data provided by the Internet Brain Segmentati(%ay matter captured on the cutting plane.

Repository (IBSR) of the Center for Morphometric Analysis
(CMA) at Massachusetts General Hospital [11]. anterior and posterior commissures and the midsagittal plane

The purpose of IBSR is to encourage the developmeaitthe level of the posterior commissure as points of reference
and evaluation of segmentation methods by providing tdsi rotation and (nondeformation) transformation [37], [8]. The
image data, human expert segmentation results, and meth@msitioned scans were then resliced into normalized 3.0-mm
for comparing segmentation results. It is one of the firsbronal, 1.0-mm axial, and 1.0-mm sagittal scans which were
efforts to offer solutions to the problem of validating andised for subsequent analysis.
comparing new algorithms in this rapidly growing medical Manual segmentation was performed on the normalized
image analysis field. The test image data sets provided in tesns by trained investigators at CMA using a semiautomated
repository permit a standardized mechanism for evaluationiofensity contour mapping algorithm [14], [11]. Once the exter-
the sensitivity of a given analysis method to signal to noisel border was determined by intensity contour mapping, grey-
ratio, contrast to noise ratio, shape complexity, degree white-matter borders were demarcated, using signal intensity
partial volume effect, etc. histograms. Using this technique, borders were defined as the

We obtained 20 normal MR brain data sets and their manualdpoint between the peaks of the bimodal histogram for a
segmentations from IBSR. These 20 coronal 3-D T1-weightgidsen structure and its adjacent tissue. Other neuroanatomical
spoiled gradient echo MRI scans were performed on tvaructures were segmented similarly [9].
different imaging systems. Ten FLASH scans on four malesAn overlap metric is used by IBSR to compare results
and six females were performed on a 1.5-T Siemens Magnetwm automatic segmentation and manual segmentation. While
MR System (Iselin, NJ) with the following parameters: ¥R manual segmentations are not ground truth, they provide a rea-
40 ms, TE= 8 ms, flip angle= 50°, field of view = 30 cm, sonable way to compare automated segmentation methods. The
slice thickness= contiguous 3.1 mm, matrix= 256 x 256, overlap metric is defined for a given voxel class assignment
and averages- 1. Ten 3-D-CAPRY scans on six males anés the number of voxels that have the class assignment in both
four females were performed on a 1.5-T General Electric Sigeagmentations, divided by the number of voxels where either
MR System (Milwaukee, WI), with the following parameterssegmentation has the class assignment, which is equivalent
TR = 50 ms, TE= 9 ms, flip angle= 50°, field of view= to T'P/(1 + FP). This metric ranges from 1.0 for perfect
24 cm, slice thickness- contiguous 3.0 mm, matrixx 256 agreement, to 0.0 for no agreement of classified voxels.

x 256, and averages 1. We interpolated the image data into 1-mm-thick coronal

All data sets were positionally normalized at CMA byslices and then ran our coupled-surfaces algorithm. Fig. 8
imposing a standard 3-D brain coordinate system on eachsBiows the overlap metric for gray-matter segmentation on 20
D MR scan, using the midpoints of the decussations of tm®rmal brains from the manual method, various automatic
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Fig. 10. Coronal slices form 3-D images. (a) Original image. (b) Cortical gray matter from manual tracing. (c) Cortical gray matter from our 3rhalgori

segmentation methods and our coupled-surfaces algorithm. TABLE I
The results from the automatic segmentation provided by OUR MEASUREMENTS COMPARED WITH EXPERT
. . TRACING RESULTS ON SEVEN FRONTAL LOBES
IBSR were from work done by Rajapakse and partially based
on the methods described in [26]. The gray-matter overlap frontal lobe frontal lobe cortex
metric for our algorithm on the whole brain is 0.657, which is TP(%) | FP(%) | TP(%) | FP(%)
well above those from the other six listed automatic methods 93.8 3.4 83.6 25.5
ranging from 0.473 to 0.564 (shown in columns one to six 93.9 1.9 86.2 20.1
in Fig. 8). Since our algorithm is designed specifically for the 95.2 2.9 86.5 244
cerebral cortex, we compute an improved overlap metric on 93.7 1.7 86.7 24.5
the upper and frontal part of the brain (to exclude brain stem 94.5 1.5 88.9 21.2
and cerebellum) of 0.701. Moreover, considering that the other 94.1 1.7 87.0 20.5
six listed automatic methods started with brain-only data sets, 94.1 1.4 89.0 19.5

while the coupled-surfaces algorithm started with unstripped
brain images, the advantage of our method with geometric
structural constraints is clear. sulcus, excluding subcortical nuclei [28]. We then create a
These 20 brain scans were chosen by IBSR because thegsk of the frontal lobe and use it to exclude the posterior
have been used in published studies [26] and cover a rangeaft of the volume.
image quality [11], with the worst ones having low contrast Fig. 9 shows a 3-D volume rendering of the cortical gray
and relatively large intensity inhomogeneities. The overlapatter of a frontal lobe, resulting from our algorithm. In
scores shown in Fig. 8 from the automatic classification methig. 10, 2-D coronal slices of the same result are shown. As
ods may appear low, however, they need to be taken irghown in Table II, over the seven frontal lobes, the TP and
the context of a wide range of image quality, and shoulP rate (compared to manual tracing by our neuroanatomy
not be compared with numbers from different studies. Moggecialist) of the whole frontal lobe averaged 94.1% and 2.1%,
recently acquired (i.e., better quality) data should result f@spectively, which demonstrated that our algorithm nicely
far better results from the automatic classification methodsplated the brain tissue from the nonbrain tissue. The average
which holds for our coupled-surfaces algorithm as well. ImP and FP rate for the cortical gray matter (measured on
fact, as shown in the section above, the overlap metric for oo orthogonal slices, one coronal and one axial, over the
phantom cortical segmentation(1928/(1 +0.060) = 0.875, entire range of the frontal lobe) in the frontal lobe were
which compares well with the manual overlap metric 086.7% and 20.8%. As we see in Fig. 10, the expert tracing
0.876 showing interoperator reproducibility from tests on foyended to be more aggressive in defining the gray-/white-
brains averaged over two experts (see Fig. 8). With the rapightter boundary, which resulted in the relatively larger value
growth of medical image processing, it is virtually impossiblgf the FP rate. Note that the FP rate on gray/white segmenta-
to implement all the novel methods published and compaign is a very sensitive measure, especially considering the
results. However we take this study as our initial step towafgct that manually drawing a boundary between gray and
more extensive evaluation of our algorithm with the help Qfhjte matter to some extent depends on subjective individual

IBSR, and we intend to carry out more studies. judgment. However, in quantifying the difference between
populations, despite the FP rates, the volume measurements
C. Results on Real MR Data for Frontal Lobe Study would still yield useful information as long as they are

We then tested our algorithm on frontal lobes of sevegpnsistent.
high-resolution MRI data sets (SPGR, 2NEX, 1x21.2 x The volume of the constituent parts of the brain is typically
1.2 mn? voxels) from a randomly chosen subset of yountiie measurement of interest for comparison among different
adult autistic and control subjects from our ongoing studiesibjects in studies of neuroanatomy. Thus, as a second way to
to measure frontal lobe volume. After preprocessing to redugasalyze the utility of our algorithm, we compute reliability
the effects of MR bias field inhomogeneity using a simplstatistics on the volume measurements using the methods
standard nonlinear map (this is also a step before exp@éescribed in [31] (see also [42]). There was strong agreement
manual tracing), we ran the coupled-surfaces algorithm between the algorithm and the expert on the volume of the
isolate the brain tissue and segment the cortex (see Fig. 7). Titomtal lobe (Pearsom = .991; intraclass correlation coeffi-
frontal lobe was then manually defined independently in tligent [ICC] = .901). The algorithm systematically estimated
left and right hemispheres as all tissue anterior to the centtiaé frontal lobe volume to be less than the expert tracer (mean
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Fig. 11. The outer and inner cortical surfaces of a frontal lobe colored witt

the specified spectrum representing shape index

difference= 4%) and this accounts for the lower ICC than [
the Pearson coefficient. Similarly, for gray-matter volume of
the frontal lobe there was also good agreement (Pearsen
.96). Thus, for both whole frontal lobe volume and frontal
gray-matter volume, the coupled-surfaces algorithm produce
measurements that were very similar to expert tracings.
Fig. 11 shows the outer and inner cortical surfaces of Fig- 12. Regional cortical thickness. (Top) Parcellation of lobes where
. . . regional cortical thickness is measured. (Bottom) Top and back views of an
frontal lobe colored with their shape indexes. As we can S&ater cortical surface colored with cortical thickness.
most parts of the gyri are automatically identified as ridge,

while most parts of the sulci are identified as rut, which

e , X TABLE Il
coincides with our knowledge of the cortical structure. REGIONAL CORTICAL THICKNESS (IN mm) oF SEVEN NORMAL MALE SUBJECTS
frontal | temporal | parietal | occipital
D. Regional Cortical Thickness 335 318 281 289
We further applied our algorithm to seven high-resolution 3.47 3.14 2.95 2.95
MRI data sets (SPGR, 2NEX, 1.2 1.2 x 1.2 mn?¥ voxels) 3.18 3.00 2.70 2.67
of normal males (average 1& 109) to study the pattern of 3.18 2.83 2.59 2.46
regional cortical thickness. 3.39 3.30 2.95 2.60
The lobes of the brain were labeled using locally developed 2.97 2.95 2.56 2.44
software [29] in conjunction with the ANALYZE software 2.99 3.04 2.78 2.44

package [30]. The frontal lobe was segmented by tracing the

central sulci directly on 3-D renderings of the brain and then ) .
in successive 2-D slices extending the traces to the depthVdf© data. This might be due to both the older age of the

the sulci and through the white matter to the midline at aftPIECtS, tissue shrinkage in the postmortem study, and volume
angle perpendicular to the interhemispheric fissure. Next, t¢€raging with our MRI data. However, it is important to note

temporal lobes were segmented by tracing the sylvian fissifi@t the variability of thickness was the same for both samples
on 3-D renderings until the point where the fissure archéabOUtO'lS mm). This gradient of thickness from front to back

upward into the parietal lobe. At that point of inflection!n the brain is well known and due to the greater number of

a plane parallel to the AC-PC was used to segment tl:;)ége pyramidal neurons in the anterior as compared to the

temporal and parietal lobes. The occipital-parietal boundaﬁ’)‘?Sterior cortices. . .
was set at midline by placing an oblique plane through the A repeated measures analysis of variance (ANOVA) tested

parietoccipital sulcus and a coronal plane at the intersectidfther cortical thickness differed by lobe, and found sig-
of the parietoccipital sulcus and the calcarine fissure. Fig. 1¥icant differences between the four lobes (F[3, 27b6.3,

(top) shows the parcellation of the lobes of a cerebrum, As< -0001). Post hoc paired tests showed that the frontal
described above. lobe and temporal lobes were each significantly thicker than

Shown in Fig. 12 (bottom) are the top and back viewgither the parietal and occipital lobg’g <.001), but they did

of an outer cortical surface colored with cortical thicknes&0t differ in thickness from one another. Likewise, parietal
Table 11l lists the cortical thickness measurements in four lob@§d occipital lobe thickness were not significantly different.
over the seven subjects. We compared the mean thickness ,

of each lobe to the data on 63 males from the postmortdm USer Interaction and Speed Issue

study by Pakkenberg and Gundersen [27], and found theln addition to robustness and accuracy, minimum user
exact same rank ordering of thickness; the frontal cortex waeraction and computational efficiency have always been two
the thickest and the occipital the thinnest. The postmortamportant issues in the problem of segmenting and measuring
data measurements were 5-14% thinner by lobe tharinourthe cortex. For an expert to manually isolate the nonbrain
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a different set of initializing spheres. The final results of the
surfaces show little visual difference. Quantitatively, the TP
rate of one with respect to the other is over 99.5% and the FP
rate is less than 0.5%.

For a 3-D image (1.2< 1.2 x 1.2 mn?¥ in voxel size) of
the whole brain, our algorithm runs in about 1 h on a SGI
Indigo2 machine with a 195-MHz R10000 processor. Skull-
stripping, segmentation and measurement of the cortex are
done simultaneously. Comparatively, to our knowledge our
algorithm outperforms other related techniques with respect to
user interaction and computational efficiency.

IV. SUMMARY AND FUTURE DIRECTIONS

In this paper, we presented a new approach to the seg-
mentation and measurement of cortical structure which is of
great interest in the study of the structural and functional
characteristics of the brain. Motivated by the fact that the
cortex has a nearly constant thickness, we model the cortex
as a volumetric layer which is completely defined by the two
bounding surfaces and the homogeneity in between. Starting
from easily initialized concentric spheres and driven by image-
derived information, two interfaces evolve out to capture the
inner and outer cortical boundaries, thereby segmenting out the
cortical gray matter from the white matter, as well as isolating
Fig. 13. Coupled-surfaces propagation on the same brain image as in Figt.hﬁ-‘ brain tissue from the nonbrain tissue. Cortical gray-matter
but with a different set of initializing spheres. For the two final results fronyolume and cortical surface area (both inner and outer) are
O e e e e s dhen measured. Due (o the coupled level set implemenation,
robustness to initialization. the cortical surface curvature and cortical thickness map

are also easily obtained. As seen from various experiments,
. . — : : .our algorithm is automatic, accurate, robust, and relatively
tissue (using a combination of image thresholding, regloc%mputationally efficient
i d fine editing with manual tracing slice by slice : " . .
growing, an 9 9 y We would like to mention that this segmentation method

to carefully remove any nonbrain voxels, such as the CSLIJ:Sing coupled-surfaces propagation has potential applications

within sulci and the dura) alone can take about 2 h. (StructurI gother medical image analysis domains, where a volumetric

ZUCh as]: tlhei. duLa ar|1_d the CS't:. n ﬁ_l:]lc' cfan only bg rgmot\;l]% er is the study of interest. Examples include the left ventric-
y careiu’ Slice-by-Sice InSpection. Tneretore, considering Hig, (LV) myocardium of the heart and the bounding wall of

thoroughn nd ob iven f the fine editing, we b Iiuv
orougnhness and obsessIVEness of the fine e 9, we eFf]eeliver. Different coupling may be used to tailor the algorithm

2 h_|s a fair estimate of the processing tlm_e). The manugy, specific applications. For example, the endocardial and
tracing of cortical gray matter is even more _tlmg Consumln%‘picardial walls which bound the thick LV myocardium are
MacDonaldet al. deformed two ellipsoids with mtersurfaceIO sely coupled instead of tightly coupled, as are the cortical

constraints to approximate the inner and the outer Cort'cﬁﬁfaces.

surfaces. Their processing time for such segmentation on eacEuture directions for this work include the following: finer

subject was rep_orte(: ;%BGMll—? 0 gg n Ian SS G_ItOrlgm ZOOthlshoagsign of the local feature operator to better model the volume
processorrunning a z[22]. In[5], it was reporte veraging effect; better capturing the homogeneity of the

the ribbon algorithm was a fairly computationally demandingolume, volume measurement on the subvoxel level; possible

|tera_1t|ve procedure, while _manual placement of the 'nm%lse of a vector image data set; and testing on image data of
cortical surface and a multiscale formulation could decrea normal brains

the computational load. The processing time per subject for
Xu’s method was reported to vary between 4.5 to 6.5 h on an
SGI 02 workstation with a 174-MHz R10000 processor [41]. ACKNOWLEDGMENT
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